Excitable Scale Free Networks

نویسندگان

  • Mauro Copelli
  • Paulo R. A. Campos
چکیده

When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collective stochastic coherence and synchronizability in weighted scale-free networks

Coupling frequently enhances noise-induced coherence and synchronization in interacting nonlinear systems, but it does so separately. In principle collective stochastic coherence and synchronizability are incompatible phenomena, since strongly synchronized elements behave identically and thus their response to noise is indistinguishable to that of a single element. Therefore one can expect syst...

متن کامل

Pulse-coupled model of excitable elements on heterogeneous sparse networks

We study a pulse-coupled dynamics of excitable elements in uncorrelated scale-free networks. Regimes of self-sustained activity are found for homogeneous and inhomogeneous couplings, in which the system displays a wide variety of behaviors, including periodic and irregular global spiking signals, as well as coherent oscillations, an unexpected form of synchronization. Our numerical results also...

متن کامل

Detecting the Influence of Spreading in Social Networks with Excitable Sensor Networks

Detecting spreading outbreaks in social networks with sensors is of great significance in applications. Inspired by the formation mechanism of humans' physical sensations to external stimuli, we propose a new method to detect the influence of spreading by constructing excitable sensor networks. Exploiting the amplifying effect of excitable sensor networks, our method can better detect small-sca...

متن کامل

Functional Optimization in Complex Excitable Networks

We study the effect of varying wiring in excitable random networks in which connection weights change with activity to mold local resistance or facilitation due to fatigue. Dynamic attractors, corresponding to patterns of activity, are then easily destabilized according to three main modes, including one in which the activity shows chaotic hopping among the patterns. We describe phase transitio...

متن کامل

Building Blocks of Self-Sustained Activity in a Simple Deterministic Model of Excitable Neural Networks

Understanding the interplay of topology and dynamics of excitable neural networks is one of the major challenges in computational neuroscience. Here we employ a simple deterministic excitable model to explore how network-wide activation patterns are shaped by network architecture. Our observables are co-activation patterns, together with the average activity of the network and the periodicities...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007